Note: Attempt all five questions, Internal chotor ts indtoated. Use of
Q1 Atempt all the questions:-
(a) Draw stress-strain curve for Mild stecl.
(b) An aluminium rod of 20 mm diameter is elongated by 3.5 mm along ha longradinel direction by a load of 25 kN . Determine the original length of the bar. Taks
(c) Define poisson's ratio. Also, state its range in normal conditions.
(d) Draw a BM diagram for a simply supported beam heving point load end a momeat acting at its center.
(e) Explain Castigliano's theorem for finding deflection of beams.
(1) Explain principle of superposition.
(g) Find principle stress with the help of a Mohr's circle for two perpendicular linear stresses $100 \mathrm{~N} / \mathrm{mm}^{2}$ (tensile) and $50 \mathrm{~N} / \mathrm{mm}^{2}$ (compressive).
(h) A cylindrical tank of 1 m internal diameter has wall thickness of 25 mm and is 20 m high. Calculate the maximum stress when the tank is full of water.
(i) What is the difference between open coiled and close colled heilical springs?
(i) Explain Lame's theorem and its application.

Q2 A steel rod of 20 mm diameter passes through a brass tube of 20 mm internal diameter and 30 mm external diameter. The nut on the rod is tightened until a stress of 123 Pa is developed in the rod. The temperature of the tube is then raised by $80^{\circ} \mathrm{C}$. What are the final stresses on the rod and the tube? Assume $\mathrm{E}_{5}=200 \mathrm{GPa}$ and $\alpha_{s}=0.0000117 / 9 \mathrm{C}$, $E_{b}=80 G P a$ and $\alpha_{b}=0.00019 /{ }^{\circ} \mathrm{C}$.
In a two dimensional problem, two mutually perpendicular stresses at a point are 120 MPa (tensile) and 80 MPa (compressive). If the principle stress is limited to 150 MPa , find the value of shear stress. Also, find the inclination of principle plane and magnitude of the maximum shear.

OR
A solid shaft is required to transmit 90 kW of power at 200 rpm . Find the diameter of the shaft, if permissible stress for the material is $60 \mathrm{~N} / \mathrm{mm}^{2}$ and permissible twist is $0.30 \% / \mathrm{m}$. Assume $\mathrm{C}=80 \mathrm{GN} / \mathrm{m}^{2}$.
A uniform T-section beam is 80 mm wide by 120 mm deep with a 25 mm thick fangs and a 12 mm thick web. If the limiting bending stress for the bearn are $80 \mathrm{MN} / \mathrm{m}^{2}$ in compression and $160 \mathrm{MN} / \mathrm{m}^{2}$ in tension. Find the maximum u.d.L that the beam can carry over a simply supported span of 4 m and having a point load of 10 kN at center of the beam length.

OR
Draw a SF and BM diagram for the overhanging beam shown in figure. Indicate the
(12.5) point of contraflexure.

Q5 A cylindrical shell is 3 m long, 1 m in diameter and thickness of metal is 10 mm . It is subjected to an internal pressure of $150 \mathrm{~N} / \mathrm{mm}^{2}$. Calculate the change in dimension of the shell and the maximum stress induced. Assume $\mathrm{E}=200 \mathrm{GPa}$ and Poison's ratio $=0,3,(12,5)$ OR
A closed coiled helical spring is to be made out of 5 mm diameter wire that is 2 m long so that it deflects by 20 mm under an exial load of 50 N . Determine the cliameter of the coil. Assume $\mathrm{C}=81 \mathrm{GN} / \mathrm{m}^{2}$.

